
Calibration and Regression Estimation in Dual
Frame Surveys

M. Giovanna Ranalli 1 & Antonio Arcos 2 & Maria del Mar Rueda 3 & David Molina4

1 Department of Political Sciences, University of Perugia,
giovanna.ranalli@stat.unipg.it

2 Department of Statistics and Operational Research, Universidad de Granada,
arcos@ugr.es

3 Department of Statistics and Operational Research, Universidad de Granada,
mrueda@ugr.es

4 Department of Statistics and Operational Research, Universidad de Granada,
dmolinam@ugr.es

Abstract. Recently, multiple frame surveys have gained much attention and became
largely used by statistical agencies and private organizations to decrease sampling costs
or to reduce frame undercoverage errors that could occur with the use of only a single
sampling frame. We will discuss recent developments in the application of the calibration
paradigm to the estimation of the total of a variable of interest in dual frame surveys as a
general tool to include auxiliary information, also available at different levels. When the
variable of interest is binary or, more generally, categorical, extension of model calibration
and generalized regression estimation in this context is also shown by means of multinomial
assisting models. A dedicated R-package – Frames2 – has also been developed to obtain
estimates from dual frame surveys and incorporating auxiliary information.
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1 Introduction

A main aim of survey statisticians is to obtain more accurate estimates, without increasing
survey costs. Two popular tools to achieve this goal are (i) the use of more than one
population frame to select independent samples and (ii) the use of auxiliary information
either at the design or at the estimation stage. The use of more than one list of population
units is important because a common practical problem in conducting sample surveys is
that frames may be incomplete or out of date, so that resulting estimates may be seriously
biased. Multiple frame surveys are useful when no single frame covers the whole target
population but the union of several available frames does, or when information about
a subgroup of particular interest comes only from an incomplete frame. They also have
other advantages. In fact, Hartley (1962) introduces dual frame surveys as a cost-saving
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device, showing that they can often achieve the same precision as a single-frame survey at
a much reduced cost. Kalton and Anderson (1986) suggest using two frames for sampling
rare populations where even greater efficiencies can be obtained. Several estimators of the
population total and mean have been proposed in the literature in dual frame surveys,
usually classified, according to the level of frame information needed, as dual-frame and
single-frame estimators.

On the other hand, the growing availability of information coming from census data,
administrative registers and previous surveys provide a wide range of variables, concerning
the population of interest, that are eligible to be employed as auxiliary information to
increase efficiency in the estimation procedure. In this scenario, a very relevant example,
especially for official statistics, is given by calibration estimation that adjusts basic design
weights to account for auxiliary information and meet benchmark constraints on auxiliary
variables population statistics (Deville and Särndal, 1992). Särndal (2007) provides an
overview on developments in calibration estimation. In this work, we will discuss how
calibration estimation can be used to handle estimation from two frame surveys and how
different types of auxiliary information can be easily integrated in the calibration process
as benchmark constraints (Section 2). Moreover, when the variable of interest is binary
or, more generally, categorical, extension of model calibration and generalized regression
estimation in the context of dual frame surveys is also illustrated by means of multinomial
assisting models (Section 3). Functionalities of a dedicated R-package – Frames2 – which
has been developed to obtain estimates from dual frame surveys will be briefly illustrated
together with some concluding remarks (Section 4).

2 Calibration for dual frame surveys

Consider a finite set ofN population units identified by the integers, U = {1, . . . , k, . . . , N},
and let A and B be two sampling-frames, both can be incomplete, but it is assumed that
together they cover the entire finite population. Let A be the set of population units
in frame A and B the set of population units in frame B. The population of interest,
U , may be divided into three mutually exclusive domains, a = A ∩ Bc, b = Ac ∩ B and
ab = A ∩ B. Because the population units in the overlap domain ab can be sampled in
either survey or both surveys, it is convenient to create a duplicate domain ba = B ∩ A,
which is identical to ab = A ∩ B, to denote the domain in the overlapping area coming
from frame B. Let N , NA, NB, Na, Nb, Nab, Nba be the number of population units in
U , A, B, a, b, ab, ba, respectively. It follows that NA = Na + Nab, NB = Nb + Nba and
N = Na +Nb +Nab = Na +Nb +Nba.

Let y be a variable of interest in the population and yk its value on unit k, for k =
1, . . . , N . The entire set of population y values is our finite population F . The objective
is to estimate the finite population total Y =

∑N
k=1 yk of y, that can be written as

Y = Ya + ηYab + (1− η)Yba + Yb, (1)
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where 0 ≤ η ≤ 1, and Ya =
∑

k∈a yk, Yab =
∑

k∈ab yk, Yba =
∑

k∈ba yk and Yb =
∑

k∈b yk.
Two probability samples sA and sB are drawn independently from frame A and frame
B of sizes nA and nB, respectively. Each design induces first-order inclusion probabilities
πAk and πBk, respectively, and sampling weights dAk = 1/πAk and dBk = 1/πBk. Units in
sA can be divided as sA = sa ∪ sab, where sa = sA ∩ a and sab = sA ∩ (ab). Similarly,
sB = sb ∪ sba, where sb = sB ∩ b and sba = sB ∩ (ba). Note that sab and sba are both from
the same domain ab, but sab is part of the frame A sample and sba is part of the frame B
sample. In this way, we have a sort of “poststratified” sample s = sa ∪ sab ∪ sba ∪ sb with
“poststratum” sample sizes na, nab, nba and nb. Note that nA = na +nab and nB = nb +nba

(see Rao and Wu, 2010).
The Hartley (1962) estimator of Y is given by

ŶH(η) = Ŷa + ηŶab + (1− η)Ŷba + Ŷb, (2)

where Ŷa =
∑

k∈sa
dAkyk is the expansion estimator for the total of domain a and similarly

for the other domains. If we let

d◦k =


dAk if k ∈ sa

ηdAk if k ∈ sab

(1− η)dBk if k ∈ sba

dBk if k ∈ sb

,

then ŶH(η) =
∑

k∈s d
◦
kyk. In the following, we will drop η for ease of notation. Choice of a

value for η has attracted much attention in literature but will not be discussed here (see
Lohr, 2009, for a review).

Now, calibration estimation, as discussed in one frame surveys by Deville and Särndal
(1992), can be used to handle estimation from two frame surveys and different types of
auxiliary information can be easily integrated in the calibration process as benchmark
constraints. Let xk = (x1k, . . . , xpk) be the value taken on unit k by a vector of auxiliary

variables x of which we assume to know the population total tx =
∑N

k=1 xk. This vector
of totals may pertain only A, only B, the entire population U , or a combination of the
three. We will look at a general formulation of the problem. Relevant examples of auxiliary
vectors x can be found in Ranalli et al. (2014), together with the asymptotic properties
of the resulting estimator.

Using the calibration paradigm, we wish to modify, as little as possible, basic Hartley
weights d◦k to obtain new weights w◦k, for k ∈ s to account for auxiliary information
and derive a more accurate estimation of the total Y . A general dual-frame calibration
estimator can be defined as ŶCAL =

∑
k∈sw

◦
kyk where w◦k is such that

min
∑
k∈s

G(w◦k, d
◦
k) s.t.

∑
k∈s

w◦kxk = tx, (3)

where G(w, d) is a distance measure satisfying the usual conditions required in the calibra-
tion paradigm (see e.g. Deville and Särndal, 1992, Section 2). Given the set of constraints,
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different calibration estimators are obtained by using different distance measures. In many
instances, numerical methods are required to solve the the minimization problem in (3).
Carefully defining the elements of the auxiliary variable vector x allows for the inclusion
of, for example, information on the frame sizes or of the overlap domain size (see Ranalli
et al., 2014, for a whole set of examples).

The calibration process induces a different final value for the weights which depends
on both the distance measure G(·, ·) used and the benchmark constraints applied. On the
other hand, given a value for η, the final set of weights does not depend on the values
of the variables of interest and can be, therefore, used for all variables of interest. When
a value for η is to be computed from the sample data, then it is essential to consider
proposals based on estimators of Na, Nb and Nab as the one in, e.g., Skinner and Rao
(1996) so that it is the same for all variables of interest.

When inclusion probabilities in domain ab are known for both frames, and not just
for the frame from which the unit was selected, single-frame methods can be used that
combine the observations into a single dataset and adjust the weights in the intersection
domain for multiplicity. In particular, observations from frame A and frame B are com-
bined and the two samples drawn independently from A and B are considered as a single
stratified sample over the three domains a, b and ab. To adjust for multiplicity, the weights
are defined as follows for all units in frame A and in frame B,

d?
k =


dAk if k ∈ sa

(1/dAk + 1/dBk)−1 if k ∈ sab ∪ sba

dBk if k ∈ sb

.

Note that units in the overlap domain, which are expected to be selected a number of
times given by 1/dAk+1/dBk have equal weights in frame A and in frame B. The estimator
proposed by Kalton and Anderson (1986) is essentially an expansion estimator for which
ŶS =

∑
k∈s d

?
kyk.

The calibration estimator in this single-frame approach is given by Ŷ S
CAL =

∑
k∈sw

?
kyk

where weights w?
k are such that

min
∑
k∈s

G(w?
k, d

?
k) s.t.

∑
k∈s

w?
kxk = tx.

Note that the only difference with equation (3) is the starting basic design weight. Note
also that calibration can handle the case in which (1/dAk + 1/dBk) ≥ 1 for some units k
and, therefore, the basic weights are smaller than 1.

In Ranalli et al. (2014) a discussion of the asymptotic properties of this estimator
is also provided. Variance estimation is also considered for both the dual and the single
frame approach, by means of an analytic variance estimator based on the linearization
technique and of Jackknife. In addition, some estimators proposed in the literature are
shown to belong the class of calibration estimators, like the estimator in Skinner (1991)
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which, when NA and NB are known, adjusts the single-frame estimator ŶS using raking
ratio estimation. In this case the single frame calibration estimator provides a simple tool
to extend such Raking Ratio estimator to general sampling designs by simply plugging in
different basic design weights d?

k, and to more composite auxiliary information settings.
In addition, it can also provide an alternative estimate for the overlap domain size Nab.

3 Model calibration and regression estimation for the

case of a categorical variable of interest

Very often in surveys the interest is in the estimation of class frequencies of a categorical
response variable, like when data is collected from respondents who provide a single choice
from a list of alternatives. We code these alternatives 1, 2, . . . ,m and the objective is to
estimate the frequency distribution of such y variable in the population U . To this end, we
define a set of indicators zi (i = 1, . . . ,m) such that for each unit k ∈ U zki = 1 if yk = i
and zki = 0 otherwise. Our problem thus, is to estimate the proportions Pi = N−1

∑
k∈U zki

i = 1, 2, . . . ,m. Note that, as before, Pi = N−1(Zai + ηZabi + (1 − η)Zbai + Zbi), where
Zai =

∑
k∈a zki, Zabi =

∑
k∈ab zki, Zba =

∑
k∈ba zki and Zb =

∑
k∈b zki.

It is well known that the efficiency of the calibration procedures relies on how well a
linear model describes the relationship between the variable(s) of interest and the auxiliary
ones. Therefore, it may be inefficient when the underlying relationship is indeed non linear
or when the variables of interest are not continuous (Wu and Sitter, 2001). In the case
of a categorical variable and assuming we also know the value of the vector of auxiliary
variables xk for k ∈ U , it seems more sensible to consider that the population under
study y = (y1, ..., yN)T is the determination of a set of super-population random variables
Y = (Y1, ..., YN)T s.t.

µki = P (Yk = i|xk) = E(Zki|xk) =
exp(xkβi)∑

r=1,...,m exp(xkrβr)
, i = 1, ..,m,

that is, to use the multinomial logistic model to relate the variables y and x. Let β be
the parameter vector (βT

1 , ...,β
T
m)T , the first step is to estimate it using the information

from the s.
In the single-frame framework, we propose to estimate β by maximizing the π-weighted

likelihood (see e.g. Wu and Sitter, 2001) given by L(β) =
∑

i=1,...,m

∑
k∈s d

?
k lnµki. This

usually requires numerical procedures, and Fisher scoring or Newton-Raphson often work
rather well. Given the estimate β̂ of β, we consider the following auxiliary variable

pki = µ̂ki =
exp(xkβ̂i)∑

r=1,...,m exp(xkrβ̂r)
. (4)
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Since the vector xk is known for all units of the population U , the values pki are available
∀k ∈ U and we propose to use the values pki to obtain a new estimator for Pi,

P̂MLRSi =
1

N

(∑
k∈U

pki +
∑
k∈s

d?
k(zki − pki)

)
. (5)

We observe that this estimator takes the same model-assisted form of a GREG estimator,
but considering more complex models, as those considered, e.g., in Wu and Sitter (2001).
Nonetheless, here it is adjusted to account for the dual frame sampling setting.

In a calibration setting, we propose to use an extension of the model calibration esti-
mator considered in Wu and Sitter (2001), that also allows to include frame membership
information. In particular, P̂MLcalSF i = 1

N

∑
k∈sw

?
kzki, where w?

k minimizes
∑

k∈sG(w?
k, d

?
k)

subject to: ∑
k∈s

w?
krki =

∑
k∈U

rki

where the elements of rki change according to the available auxiliary information. For
example, if NA, NB Nab are known, then rki = (δk(a), δk(ab) + δk(ba), δk(b), pki), while, if
only NA and NB are known, then rki = (δk(a)+δk(ab)+δk(ba), δk(b)+δk(ba)+δk(ab), pki).
Here, δk(a), δk(ab), δk(ba) and δk(b) are the indicator variables for domains a, ab, ba and b,
respectively.

In the dual frame approach, parameter estimates and, then, probabilities µki are ob-
tained separately for each frame. That is, for each k ∈ A, using data of sample sA one
can estimate µki by

pA
ki =

exp(xkβ̂
A

i )∑
r=1,...,m exp(xkβ̂

A

r )
,

where we estimate βA by maximizing L(βA) =
∑

i=1,...,m

∑
k∈sA

dAk lnµki. Similarly we

obtain pB
ki for k ∈ B. Then several alternative regression and model calibration estimators

can be considered according to the different combinations of such estimates and frame
level information. Note that the proposed estimators have the additional advantage that
the estimates of proportions for each category add to 1. This is an important issue for
statistical agencies because it grants internal consistency of estimates. For further details
see Rueda et al. (2014).

4 Concluding remarks

The contribution deals with recent developments in estimation from dual frame surveys
that try to incorporate available auxiliary information into the estimation procedure.
The natural environment in a survey setting to achieve this is through the calibration
framework. The latter allows to handle auxiliary information at different frame levels and
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for both categorical and continuous variables. In this sense, post-stratification, raking
ratio and regression estimation can all be seen as particular cases of calibration.

The calibration framework is also very flexible because it allows to account using model
calibration for the fact that the variable of interest can be categorical and, therefore, more
suitable modeling could be performed. We have briefly reviewed the possibility of handling
it using multinomial logistic models.

Calibration is also a well known tool to handle non-sampling errors, especially unit
non-response. Extension of the calibration framework to handle estimation from dual
frame surveys opens the possibility to use auxiliary information to reduce non-response
bias also in this setting. This is particularly relevant when response propensity is different
in different frames and calibration can allow for more flexible weight adjustments.

An R package Frames2 is being developed for point and interval estimation in dual
frame context. Functions composing the package implement the most important estima-
tors in the literature for population totals and means under the dual-frame approach and
also under the single-frame approach. The calibration approach is also included to incor-
porate auxiliary information about frame sizes and also about one or several auxiliary
variables in one or two frames. Additional functions for confidence interval estimation
based on the jackknife variance estimation are being included as well.
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