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Résumé. Nous proposons un nouvel estimateur pour les inventaires forestiers util-
isant des plans de sondage à trois phases pour lesquels l’information auxiliaire consiste
en une première composante connue en chaque point de la phase ”nulle” et une sec-
onde composante connue seulement en chaque point de la première phase, alors que la
deuxième phase consiste en l’inventaire terrestre. Nous proposons une nouvelle version
de l’estimateur par regression, aussi bien pour l’estimation globale que locale, et nous
donnons la variance asymptotique sous le plan de sondage. Le nouvel estimateur est
particulièrement utile pour réduire substantiellement le temps de calcul requis pour un
traitement exhaustif de très grandes bases de données obtenues par les moyens modernes
de télédétection tels que LiDAR.
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1 Introduction

The motivation for this work is due to the increasing need of using national or regional
inventories for local estimation in order to meet tighter budgetary constraints, which is
only feasible under extensive use of auxiliary information, provided e.g. by remote sens-
ing (aerial photographs or LiDAR data). The small-area estimation problem is in this
context of the utmost importance. The present paper is a terse summary of the results
presented in Mandallaz (2014), which extends the so-called generalized regression esti-
mator proposed in Mandallaz et al. (2013) to the case where the first component of the
auxiliary information is no longer exhaustive, but is provided by a very large sample, the
null-phase. The second component is available on a sub-sample of the null-phase, the
first-phase, and the terrestrial inventory is performed on a sub-sample of the first phase,
the second-phase. This set-up is particularly useful for national or regional inventories
for two reasons: (1) the first component may not be available exhaustively (2) even if it
were it may be computationally prohibitive for some of its variables, particularly those
based on sophisticated algorithms requiring single tree identification (as in Mandallaz
et al. (2013)). The three-phase estimators has also great potential in continuous forest
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inventory and has been successfully implemented in the Swiss National Inventory (SNI),
which has moved from a periodic (every 10 years) to an annual survey (see the recent
paper Massey et al. (2014) for details).
The methodology and terminology of the present paper rests upon the design-based
Monte-Carlo approach to sampling theory for forest inventory. The reader unfamiliar
with this topic should first consult Mandallaz (2008, 2013a) for a first perusal and more
bibliographical references. The interested reader will find the proofs of the results and fur-
ther developments in the on-line technical report Mandallaz (2013b). Parts of the results
(valid under the so-called external model assumption) have a very intuitive background
and they can be easily implemented with standard statistical software packages while
their performances are close to the g-weight procedures presented here (for which the R
program maSAE is available from cran.r-project.org/web/packages/). Also, it is worth
mentioning that at the present time there are no simple alternative model-dependent
techniques for this three-phase set-up (relying e.g. on Kriging or mixed models).

2 Methodology

The null phase draws a very large sample s0 of n0 points xi ∈ s0 (i = 1, 2 . . . n0) that are
independently and uniformly distributed within the forest area F . At each of those points
auxiliary information is collected, very often coding information of qualitative nature
(e.g. following the interpretation of aerial photographs) or quantitative (e.g. timber
volume estimates based on LiDAR measurements). We shall assume that the auxiliary
information at point x is described by the column vector ZZZ(1)(x) ∈ <p. The case n0 =∞,
i.e. ZZZ(1)(x) is exhaustive, has been investigated in Mandallaz et al. (2013). The first
phase draws a large sample s1 ⊂ s0 of n1 << n0 points by simple random sampling in s0.
Note that the points x ∈ s1 are also uniformly independently distributed in F . For each
point in the first phase a further component ZZZ(2)(x) ∈ <q of the auxiliary information is
available and hence also the vector ZZZt(x) = (ZZZ(1)t(x),ZZZ(2)t(x)) ∈ <p+q (the upper index t
denotes the transposition operator). The second phase draws a small sample s2 ⊂ s1 of
n2 points from s1 by simple random sampling and consists of the terrestrial inventory.
To set the stage the component ZZZ(1)(x) ∈ <p can be based on the interpretation of aerial
photographs or on simple characteristics of the canopy height obtained from LiDAR data
(such as mean canopy height and eventually quantiles thereof), whereas ZZZ(2)(x) ∈ <p is
based on other computationally intensive characteristics of the canopy requiring individual
tree detection (e.g. tree species or tree volume prediction based on tree height). The
reason for introducing the null-phase sample s0 is that the component ZZZ(1)(x) can be
computationally prohibitive to calculate exhaustively in extensive forest inventories (see
Mandallaz (2013a) for a case study with LiDAR data). In the afore mentioned continuous
annual SNIZZZ(1)(x) from the null-phase is based on data obtained from aerial photographs
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and on simple stratification criteria, ZZZ(2)(x) from the first-phase is based on updates of
previous terrestrial inventory plots and the second phase provides the annual local density
Y (x) defined below.
In the forested area F we consider a well defined population P of N trees with response
variable Yi, i = 1, 2 . . . N , e.g. the timber volume. The objective is to estimate the
spatial mean Ȳ = 1

λ(F )

∑N
i=1 Yi, where λ(F ) denotes the surface area of F (usually in ha).

For each point x ∈ s2 trees are drawn from the population P with probabilities πi, for
instance with concentric circles or angle count techniques. The set of trees selected at
point x is denoted by s2(x). From each of the selected trees i ∈ s2(x) one determines Yi.
The indicator variable Ii(x) is equal to 1 if i ∈ s2(x), otherwise Ii(x) = 0. At each point
x ∈ s2 the terrestrial inventory provides the local density Y (x)

Y (x) =
1

λ(F )

N∑
i=1

Ii(x)Yi
πi

=
1

λ(F )

∑
i∈s2(x)

Yi
πi

(1)

The term 1
λ(F )πi

is the tree extrapolation factor fi with dimension ha−1. Because of

possible boundary adjustments λ(F )πi = λ(F ∩ Ki), where Ki is the inclusion circle of
the i-th tree. In the infinite population or Monte Carlo approach one samples the function
Y (x) and we have Ex(Y (x)) = 1

λ(F )

∫
F
Y (x)dx = 1

λ(F )

∑N
i=1 Yi = Ȳ , where Ex denotes the

expectation with respect to a random point x uniformly distributed in F . In practice
one uses embedded systematic grids, which in most instances can be treated as random
samples for global estimation whereas for local estimation the design-based error can be
expected to be be slightly larger than the model-dependent error obtained by the more
sophisticated Double Kriging techniques (the geostatistical version of the standard two-
phase regression estimator, Mandallaz (2008), chapter 8).) It can be safely conjectured
that the same will hold true in the present context.

3 The models

We shall work with the following linear models

1. The large model M

Y (x) = ZZZt(x)βββ +R(x) = ZZZ(1)t(x)βββ(1) +ZZZ(2)t(x)βββ(2) +R(x) =: Ŷ (x) +R(x) (2)

with βββt = (βββ(1)t,βββ(2)t) and the theoretical predictions Ŷ (x) = ZZZt(x)βββ.
The intercept term is contained in ZZZ(1)(x) or a linear combination of the components
of ZZZ(1)(x) is constant equal to 1.
The theoretical regression parameter βββ minimizes

∫
F

(Y (x)−ZZZt(x)βββ)2dx, it satisfies
the normal equation

( ∫
F
ZZZ(x)ZZZt(x)dx

)
βββ =

∫
F
Y (x)ZZZ(x)dx and the orthogonal-

ity relationship
∫
F
R(x)ZZZ(x)dx = 000, in particular the zero mean residual property

1
λ(F )

∫
F
R(x)dx = 0.

3



2. The reduced model M1

Y (x) = ZZZ(1)t(x)ααα +R1(x) =: Ŷ1(x) +R1(x) (3)

The theoretical regression parameter ααα minimizes
∫
F

(Y (x)−ZZZ(1)t(x)ααα)2dx. It sat-

isfies the normal equation
( ∫

F
ZZZ(1)(x)ZZZ(1)t(x)dx

)
ααα =

∫
F
Y (x)ZZZ(1)(x)dx and the or-

thogonality relationship
∫
F
R1(x)ZZZ(1)(x)dx = 000, in particular the zero mean residual

property 1
λ(F )

∫
F
R1(x)dx = 0. Ŷ1(x) = ZZZ(1)t(x)ααα are the theoretical predictions.

Let us emphasize the fact that in this paper we consider only the properties of estimators
in the design-based paradigm and that we do not assume the above models to be correct
in the sense of model-dependent inference.

4 The three-phase generalized regression estimator

We consider the following design-based least squares estimators of the regression coeffi-
cients of the reduced model, which are solutions of sample copies of the normal equations

α̂ααk =
( 1

nk

∑
x∈sk

ZZZ(1)(x)ZZZ(1)t(x)
)−1 1

nk

∑
x∈sk

Y (x)ZZZ(1)(x)

:= (AAA
(1)
k )−1 1

nk

∑
x∈sk

Y (x)ZZZ(1)(x) =: (AAA
(1)
k )−1UUU

(1)
k , k = 0, 1, 2 (4)

Likewise for the large large model we set

β̂ββk =
( 1

nk

∑
x∈sk

ZZZ(x)ZZZt(x)
)−1 1

nk

∑
x∈sk

Y (x)ZZZ(x)

= AAA−1
k

1

nk

∑
x∈sk

Y (x)ZZZ(x) =: AAA−1
k UUUk, k = 0, 1, 2 (5)

Note that only α̂αα2 and β̂ββ2 are observable, because Y (x) is only available at x ∈ s2, and

that in general the vector consisting of the first p components of β̂ββ2 is not equal to α̂αα2.
For simplicity we shall use the same notation for the theoretical and empirical predictions
of both models, i.e. we set Ŷ (x) = ZZZt(x)β̂ββ2 and Ŷ1(x) = ZZZ(1)t(x)α̂αα2.
Consistent estimates of the design-based covariance matrices are given by

Σ̂ΣΣβ̂ββ2
= AAA−1

2

( 1

n2
2

∑
x∈s2

R̂2(x)ZZZ(x)ZZZt(x)
)
AAA−1

2

Σ̂ΣΣα̂αα2 = (AAA
(1)
1 )−1

( 1

n2
2

∑
x∈s2

R̂2
1(x)ZZZ(1)(x)ZZZ(1)t(x)

)
(AAA

(1)
1 )−1 (6)
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with the empirical residuals R̂(x) = Y (x) −ZZZt(x)β̂ββ2 and R̂1(x) = Y (x) −ZZZ(1)t(x)α̂αα2. It
is interesting to note that the above design-based covariance matrices are algebraically
equivalent to the robust model-dependent covariance matrices discussed by Huber (1967).
We define the three-phase generalized regression estimator as

ŶF,g3reg =
1

n0

∑
x∈s0

Ŷ1(x) +
1

n1

∑
x∈s1

(Ŷ (x)− Ŷ1(x)) +
1

n2

∑
x∈s2

(Y (x)− Ŷ (x))

= ( ˆ̄ZZZ
(1)
0 − ˆ̄ZZZ

(1)
1 )tα̂αα2 + ˆ̄ZZZt

1β̂ββ2 (7)

where ˆ̄ZZZ
(1)
0 = 1

n0

∑
x∈s0 ZZZ

(1)(x).

It can be shown that the asymptotic design-based covariance matrices of V̂0,1,2(ŶF,g3reg)
can be consistently estimated by

V̂0,1,2(ŶF,g3reg) = α̂ααt2Σ̂ΣΣ ˆ̄ZZZ
(1)
0
α̂αα2 +

n2

n1

ˆ̄ZZZ
(1)t
0 Σ̂ΣΣα̂αα2

ˆ̄ZZZ
(1)
0 + (1− n2

n1

) ˆ̄ZZZt
1Σ̂ΣΣβ̂ββ2

ˆ̄ZZZt
1 (8)

where

Σ̂ΣΣ ˆ̄ZZZ
(1)
0

=
1

n0

∑
x∈s0(ZZZ

(1)(x)− ˆ̄ZZZ
(1)
0 )(ZZZ(x)− ˆ̄ZZZ

(1)
0 )t

n0 − 1
(9)

One can rewrite [8] in the celebrated g-weight form, computationally more suitable for
practical implementation (see Mandallaz (2013b) for details) and which enjoys several
nice statistical calibration properties.
It can be shown that[8] is asymptotically equivalent to the following so-called external
variance estimate

V̂ext(ŶF,g3reg) =
1

n0

∑
x∈s0(Ŷ1(x)− ˆ̄Y1)2

n0 − 1

+
1

n1

1

n2 − 1

∑
x∈s2

(R̂1(x)− ˆ̄R1)2 + (1− n2

n1

)
1

n2(n2 − 1)

∑
x∈s2

(R̂(x)− ˆ̄R)2(10)

where ˆ̄Y1 = 1
n0

∑
x∈s0 Ŷ1(x), ˆ̄R1 = 1

n2

∑
x∈s2 R̂1(x) = 0 and ˆ̄R = 1

n2

∑
x∈s2 R̂(x) = 0.

For the limit case n0 =∞ one obtains the formulae discussed in Mandallaz et al. (2013).

5 Further results

The previous results can be easily adapted to the estimation problem for a small area
G ⊂ F . One simply extends the reduced model with the indicator variable IG(x) of
the small area G which ensures also zero mean residuals over G. Details are given in
Mandallaz et al. (2013). Most national inventories rely on cluster sampling to reduce
costs. Again, all the previous results can be extended to cluster sampling, the formulae
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are algebraically a bit more cumbersome due to the random number of plots per cluster
falling in the forested area, see Mandallaz (2013b) for details. Finally, essentially the
same results also hold if two-stage sampling is used at the plot level (as in the SNI,
where a more accurate timber volume is obtained via further tree diameter and height
measurements). One simply replace the local density Y (x) by the so-called generalized
local density Y ∗(x) (see Mandallaz and Massey (2012) for details).
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