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1 Introduction	

Domain estimates at Statistics Canada are typically obtained using well-established methods based on 
calibration estimation. Another way of producing these estimates is through small area methods. These 
methods are particularly important when the sample size in the domains is “small.” They can improve the 
reliability of the direct estimates provided that the variable of interest is well correlated with auxiliary 
variables x available from administrative files. Small area estimation essentially combines the associated 
direct estimates with model-based estimates in an optimal manner. The model-based estimates involve known 
population totals (auxiliary data) and estimates of the regression between the variable of interest and the 
auxiliary data across the small areas. In general, these models are classified into two groups: unit level 
models and area level models. Unit level models are generally based on observation units (e.g., persons or 
companies) from the survey and auxiliary variables associated with each observation, whereas area level 
models are based on direct survey estimates aggregated from the unit level data and related area-level 
auxiliary variables; see Rao (2003) for an overview of small area models. 

A SAS based prototype (Estevao et al 2014a and 2014b) has been recently developed at Statistics Canada to 
produce small area estimates. It currently incorporates two well-known methods initially developed by Fay 
and Herriot (1979) for area level estimation, and Battese, Harter, and Fuller (1988) for unit level estimation. 

In the simulations, we looked at the properties of estimators of domain totals. We compared model-based 
small-area estimators with traditional estimators through simulation. The latter include the 
Horvitz-Thompson estimator, two calibration estimators, the modified regression estimator and the synthetic 
estimator. The small-area estimators are the EBLUP and Pseudo-EBLUP estimators based on a unit-level 
model. More details on all of these estimators are given in section 2. The setup for the simulations is 
described in section 3. Section 4 presents the measures used to assess the results. The study and its results are 
given in section 5. Section 6 provides a few conclusions from our findings. 

2 Estimators	Studied	in	the	Simulations	

The main objective of the study is to compare the properties of model-based small-area estimators with those 
traditionally used in survey estimation. In our simulations, we draw repeated samples s from  U using simple 
random sampling without replacement. The portion of the sample in domain dU  is denoted by ds . The 

number of units in ds  is given by dn . 

We considered seven estimators of a domain total 
dd d jj UY y  . To simplify the presentation, we divided 

the estimators into the two groups shown in Table 1 and Table 2. Table 1 shows the traditional estimators and 
Table 2 shows the small-area estimators. 

We use the following notation in both tables. The survey design weight for unit j in domain i is denoted by 

i jw . The corresponding value of the variable of interest is given by i jy . The vector of auxiliary variables is 

shown as i jx . Other terms are explained in later sections. 



 

2 
 

 

Table 1: Traditional Domain Estimators 
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The estimators in Table 1 are the Horvitz-Thompson estimator d̂ HTY , two calibration estimators, ˆ
dd CALUY  

and d̂ CALUY  (inspired by Deville and Särndal 1982), based on auxiliary information at the domain and 

population respectively, the modified regression estimator d̂ REGY  and the synthetic estimator d̂ SYNY .  

Table 2: Small-Area Estimators 

Estimator Formula 

EBLUP 
(EBLUP) 

ˆ ˆˆ{ ( )} 0ˆ
ˆ 0

T T
d d EBLUP da da da EBLUP d

d EBLUP T
d EBLUP d

N y n
Y

n

    


X β x β

X β

 if 

                                        if 
 

with d

d

d j d jj s
da

d jj s

a y
y

a








 and d

d

d j d jj s
da

d jj s

a

a








x
x  

2

2 2 2

ˆ
ˆ

ˆ ˆ
v

da
v e da




  



 with 2 1

d

da
d jj s a







 for 1,2,...,d D  

and 

1

1 1

ˆ ˆ ˆ( ) ( )
i i

D D
T

EBLUP i j i j ia ia i j i j i j ia ia i j
i j i js s

a a y 


   

 
    
 
   β x x x x x  

Pseudo-EBLUP 
(PEBLUP) 

ˆ ˆˆ{ ( )} 0
ˆ

ˆ 0

T T
d d PEBLUP dw dw dw PEBLUP d

d PEBLUP T
d PEBLUP d

N y n
Y

n

    


X β x β

X β

 if 

                                          if 
 

with d

d

d j d jj s
dw

d jj s

w y
y

w








, d

d

d j d jj s
dw

d jj s

w

w








x
x  

2

2 2 2

ˆ
ˆ

ˆ ˆ
v

dw
v e dw




  



 where 

 
2

2
2

d

d

d j d jj s
d w

d jj s

w a

w
 







 for 1,2,...,d D , 

1

1 1

ˆ ˆ ˆ( ) ( )
i i

D D
T

PEBLUP i j i j i j iwa iwa i j i j i j i j iwa iwa i j
i j i js s

w a w a y 


   

 
    
 
   β x x x x x  

with i

i

i j i j i jj s
iwa

i j i jj s

w a

w a








x
x  and 

2

2 2 2

ˆ
ˆ

ˆ ˆ
v

iwa
v e iwa




  



 

where 

 
2

2
2

( )
i

i

i j i j i jj s
iwa

i j i jj s

w a a

w a
 







 for 1,2,...,i D  

Note: 21i j i ja k  



 

4 
 

The estimator d̂ HTY  uses no auxiliary information. This estimator is unbiased but produces inefficient 

estimates compared to the others. When there are no sample units in the domain, we set d̂ HTY  to 0. This 

ensures that the estimator is unbiased for dY  over all samples. 

The two calibration estimators use auxiliary information at different levels. Estimator ˆ
dd CALUY  uses auxiliary 

information at the domain level while d̂ CALUY  uses information at the population level. The estimator 

ˆ
dd CALUY  is known to be more efficient than d̂ CALUY . However, ˆ

dd CALUY  has some drawbacks. It is not 

always possible to obtain auxiliary information at the domain level. Even if this information is available, we 

cannot produce estimates using ˆ
dd CALUY  if there are no sample units in the domain. Furthermore, this 

estimator can produce erratic values when there are only a few units in the domain. To prevent this, we need 
to make sure that the number of units in the domain is larger than the number of auxiliary variables. In our 
simulations we use two auxiliary variables; one of these has a constant value of 1 and represents the intercept 

in the model. As a minimal requirement, we produce ˆ
dd CALUY  only if there are 3 or more units in a domain. 

Otherwise, we cannot produce a value, so we set it to missing. This means that we only work with a subset of 
all possible samples. Earlier simulations showed that we cannot set the value to 0 as this would result in a 

biased estimator. As for d̂ CALUY , when there are no sample units in the domain, we set the value of this 

estimator to 0. This ensures that the estimator is approximately design unbiased for the domain total. 

The synthetic estimator (Gonzalez 1973) was used to produce estimates for small areas before the 
development of the EBLUP and Pseudo-EBLUP estimators. The synthetic estimator uses the same regression 

coefficient as the modified regression estimator ( ˆ ˆ
SYN REGβ β ). 

The modified regression estimator d̂ REGY  (Woodruff 1966) is a hybrid of ˆ
dd CALUY and d̂ CALUY . It requires 

auxiliary totals at the domain level but makes use a regression coefficient at the population level. When there 

are no sample units in the domain, we produce the synthetic estimate given by ˆ ˆT T
d REG d SYNX β X β . 

The small-area estimators in Table 2 are based on a hierarchical model at the unit level. This model is as 
follows. 

 T
i j ij i i jy v e  x β , where 2(0, )i vv iid  and 2 2(0, )i j ij ee iid k   (1) 

In our application of this model, the areas are our domains of interest. The quantity T
ijx β  is the fixed effect 

which is assumed to be a linear combination of the auxiliary variables ijx . The term iv  is a random effect for 

the area (domain) and the i je  are the random errors at the unit level. The term 2
ijk  is a coefficient which 

reflects the heterogeneity of the random errors. This coefficient translates to ija  in the various formulas in 

Table 2 through the definition 21ij ija k . 

The small area estimator d̂ EBLUPY , given in Rao (2003, p.136), is an extension of the Battese, Harter, and 

Fuller (1988) for the case where the error structure of the residuals is not homogeneous. Estimator d̂ PEBLUPY  

is an extension of the Pseudo-EBLUP estimator given in You and Rao (2002) that accounts for the 
heterogeneity of the ije  residuals in the model given by (1). It includes the survey weights i jw  in the 

regression coefficient and the parameter estimate. 
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3 The	Set	Up	for	the	Populations	and	Domains	in	the	Simulations	

For each of our simulations, we created a population U  of size N  with 29D   mutually exclusive domains 

dU   1, ,d D  . Each domain had a different number of units dN . These numbers were equally spaced 

with 1 20N  , 2 30N  , 3 40N  , all the way up to domain 29U  with 29 300N   units. This means 

1 4640D
ddN N  . 

Each simulation involved the selection of 100,000 independent samples and the calculation of various 
estimates for each sample. Each sample was a simple random sample s of size n selected without replacement 
from  U. We used sample sizes 232n   (5%), 464n   (10%), 696n   (15%) and 928n   (20%), where the 
sampling fractions are indicated in brackets. These are within the range of the sampling fractions typically 
used by many surveys. 

The sample units in domain dU  are denoted by ds  with 
1

D
dds s   . We observe dn  units in dU  where 

0 d dn N   and 1
D

ddn n . Under simple random sampling without replacement, the dn  follow a 

multivariate hypergeometric distribution with probability mass function 1
dD

d
d

N N

n n
   
   

  
  . 

The following table shows the probability of observing 0dn  , 1dn   and 2dn   in the three smallest 

domains when the sample size 232n  . 

 

From this table, we can see what happens in the smallest domain ( 1U ) when the sample size 232n   (with 

the probabilities highlighted in yellow). We produce ˆ 0d HTY   and ˆ 0d CALUY   about 36% of the time 

(whenever 0dn  ). Since we require 3dn  , we cannot produce an estimate for ˆ
dd CALUY  in approximately 

92.5% of the samples. 

4 Measures	Used	in	the	Analysis	of	the	Simulation	Results	

In each simulation, we selected 100,000R  independent SRWOR samples. For each sample, we calculated 
estimates of dY  based on the seven estimators. This allowed us to produce the simulation bias, variance and 
mean squared error. Their definitions are given below. 

 2( ) ( )( ) ( ) 2
1 11 1

ˆ ˆˆ ˆ( )
ˆ ˆ ˆ( ) , ( ) , ( )

R Rr rR Rr r
d EST d ESTr r dd EST d ESTr r

d EST d d EST d EST

Y Y RY Y Y
Bias Y Y Var Y MSE Y

R R R

  
      

  

 

We use ( )ˆ r
d ESTY  to denote the estimate produced for the thr  sample ( 1, 2,...r R ), where the subscript ‘EST’ is 

a placeholder for any one of the seven estimators. 

Table 3: Hypergeometric Probabilities in the Three Smallest Domains when Sample Size 232n   

 1U  with 1 20N   2U  with 2 30N   3U  with 3 40N   

( 0)dProb n   0.3577119 0.2135777 0.1273735 

( 1)dProb n   0.3781689 0.3394612 0.2705485 

( 2)dProb n   0.1890414 0.2595948 0.2788755 
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In addition to these estimates for each domain, we included 3 measures to summarize the properties of each 
estimator over all of the domains. 

 

1

1

1

ˆ( )1ˆ ˆ ˆ( ) ( )   where  ( )

ˆ( )1ˆ ˆ ˆ( ) ( )   where  ( )

ˆ( ) 1ˆ ˆ ˆ( )    where  ( ) ( )
ˆ( )

d ESTD
EST d EST d ESTd

d

d ESTD
EST d EST d ESTd

d

DHT
EST EST d ESTd

EST

Bias Y
ARB Y ARB Y ARB Y

D Y

MSE Y
CV Y CV Y CV Y

D Y

MSE Y
RE Y MSE Y MSE Y

DMSE Y







 

 

 







 

The measure given by ˆ( )ESTRE Y  measures the average efficiency of each estimator relative to the 

Horvitz-Thompson estimator. Since d̂ HTY  is known to have the least efficiency among these seven 

estimators, this measure is a number larger than or equal to 1. 

5 Simulations	

We looked at the effect of fitting an improper model. We did this by generating a population under a specific 
model and then specifying a set of auxiliary variables that did not reflect the model.  

We created values for the single auxiliary x using a ( , )Gamma    distribution. Then we generated values for 

the variable of interest y through the model specified below for the units in the domains iU  for 1,2,...,29i  . 

2 2 2
0 1 ,  where  (0, ) and (0, )

with  (5,10)

i j i j i i j i v i j ij e

i j

y b b x v e v Normal e Normal k

x Gamma

      



 
 

The auxiliary variable x has a ( 5, 10)Gamma     distribution with mean 50   and variance 
2 500  . We used 2 2 220 400v e     and set 2

ij ijk x . 

We placed the domains into 3 groups and used a different intercept 0b  and slope 1b  for each group. Our 
choices were as follows. 

Group Domains in Group 0b  1b  

1 iU  for 1...9i   200 30 

2 iU  for 10...19i   300 20 

3 iU  for 20... 29i   400 10 

 

A plot of the generated population is shown in Figure 1. The units in the groups are shown respectively in 
green, blue and yellow. The regression lines (with the corresponding 0b  and 1b ) are shown in red. Without 
the colours to identify the groups (as shown in the inset of Figure 1), one might be inclined to think that the 
population was generated under a simple model with a single auxiliary variable (one intercept and slope). 
Therefore, in the first run (run 1) of our study, we produced the seven estimators using the auxiliary variables 

(1, )i j i jxx . In the second run (run 2), we acknowledged that there are three separate models and used a set 
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of auxiliary variables reflecting the manner in which the population values were generated. This meant using 
a set of dummy-coded auxiliary variables defined as follows for each unit: 

 

 
 
 

1,0,0, ,0,0   if  group 1 

0,1,0,0, ,0   if  group 2 

0,0,1,0,0,   if  group 3 

i j i

T
i j i j i

i j i

x j U

x j U

x j U

  

  


 

x  (2) 

In the small-area estimation model given by (1) the use of this i jx  meant having a regression coefficient 

 1 2 3 4 5 6, , , , ,
T     β  for the fixed effects. To produce the synthetic estimator and the calibration 

estimators we put i j i jc x  to reflect the heterogeneity of the model errors. 

 

Figure 1:  Plot of y vs x for Population in the Simulation Study 

We carried out two separate runs with the two different sets of auxiliary variables. In each run, we selected 
100,000 independent samples from the population and produced estimates of the domain totals dY  based on 
the seven estimators. Table 4, Table 5 and Table 6 show the differences between the two runs using the 
summary statistics described in the previous section. The results are presented after these three tables. 
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Run 1 Results 

▪ The calibration estimator ˆ
dd CALUY  is generally the best estimator for most domains and sample sizes. 

This is certainly true for large domains and large sample sizes. However, this estimator is very 
sensitive to the realized sample size in the domain ( dn ). For small domains, this estimator can 
produce erratic and wide ranging estimates when the realized sample size in the domain is small. 

Table 6:  Average Relative Efficiency ˆ( )ESTRE Y  

Sample Size Run ˆ
HTY  ˆ

SYNY  ˆ
dCALUY  ˆ

CALUY  ˆ
REGY  ˆ

EBLUPY  ˆ
PEBLUPY  

232 1 1.000 1.498 6.434 1.000 3.476 4.044 5.479 

 2 1.000 13.227 6.571 1.028 8.477 13.965 13.958 

464 1 1.000 1.032 7.393 1.001 3.465 3.245 5.590 

 2 1.000 9.840 7.176 1.035 8.431 11.720 11.644 

696 1 1.000 0.819 7.869 1.001 3.465 2.747 5.621 

 2 1.000 8.027 7.846 1.037 8.413 10.665 10.561 

928 1 1.000 0.689 8.068 1.001 3.462 2.395 5.639 

 2 1.000 6.842 8.098 1.039 8.403 10.059 9.950 

Note: The higher the number the more efficient the estimator relative to the HT estimator. 

Table 5:  Average Coefficient of Variation ˆ( )ESTCV Y  

Sample Size Run ˆ
HTY  ˆ

SYNY  ˆ
dCALUY  ˆ

CALUY  ˆ
REGY  ˆ

EBLUPY  ˆ
PEBLUPY  

232 1 42.787 24.268 6.565 42.809 12.817 9.895 7.926 

 2 42.765 2.166 6.389 42.044 4.467 2.218 2.213 

464 1 29.408 24.221 4.094 29.403 8.839 8.183 5.359 

 2 29.446 1.823 4.357 28.638 3.097 1.766 1.769 

696 1 23.333 24.205 2.977 23.319 7.018 7.487 4.196 

 2 23.358 1.686 3.006 22.636 2.463 1.541 1.548 

928 1 19.609 24.198 2.380 19.594 5.901 7.100 3.494 

 2 19.606 1.607 2.351 18.963 2.071 1.386 1.395 

Note: All numbers are percentages. Lower numbers indicate more efficient estimators.

Table 4:  Average Absolute Relative Bias ˆ( )ESTARB Y  

Sample Size Run ˆ
HTY  ˆ

SYNY  ˆ
dCALUY  ˆ

CALUY  ˆ
REGY  ˆ

EBLUPY  ˆ
PEBLUPY  

232 1 0.115 24.178 0.161 0.149 0.188 7.582 4.115 

 2 0.110 1.332 0.152 0.356 0.048 1.066 1.081 

464 1 0.083 24.179 0.082 0.089 0.096 6.709 2.240 

 2 0.060 1.332 0.073 0.186 0.023 0.945 0.963 

696 1 0.062 24.179 0.046 0.061 0.062 6.426 1.519 

 2 0.045 1.333 0.044 0.110 0.017 0.844 0.861 

928 1 0.057 24.179 0.032 0.059 0.044 6.289 1.137 

 2 0.052 1.333 0.032 0.086 0.011 0.761 0.772 

Note: All numbers are percentages. Lower numbers indicate more accurate estimators. 
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▪ On balance, the results show that when we specify a set of auxiliary variables that do not adequately 

reflect the underlying model for the population, the estimator ˆ
dd CALUY  provides the best protection 

against model misspecification. This makes sense because the resulting calibration at the domain 
level leads to a separate fit for each domain which is known to be more efficient. 

▪ The two small-area estimators d̂ EBLUPY  and d̂ PEBLUPY  produce efficient estimates for small domains 

and small sample sizes but they are not as efficient as ˆ
dd CALUY  for larger domains and sample sizes. 

▪ The synthetic estimator d̂ SYNY  and the two small-area estimators have larger bias than the other 

estimators. This is much more pronounced for the synthetic estimator than the small-area estimators. 
▪ The synthetic estimator is not sensitive to the realized sample size in the domain. We do not see a 

significant reduction in the MSE as we increase the overall sample size. This is true for all domains. 

▪ The estimators d̂ HTY  and d̂ CALUY  have similar properties across all domains and sample sizes. They 

tend to produce the most inefficient estimates in terms of MSE. The estimator d̂ CALUY  uses auxiliary 

information at the population level to produce estimates at the domain level. This is very inefficient 
when the domains are considerably smaller than the population. In fact, the results suggest that this is 
almost equivalent to using no auxiliary information. 

▪ The modified regression estimator d̂ REGY  performs better than d̂ HTY  and d̂ CALUY  but is less efficient 

than ˆ
dd CALUY . 

Run 2 Results 

▪ With the dummy-coded auxiliary variables we see an improvement in all estimators except d̂ HTY . 

▪ The greatest improvement is seen for both d̂ SYNY  and the small-areas estimators d̂ EBLUPY  and 

d̂ PEBLUPY . This is expected because we now have the ‘right’ model. These estimators produce the most 

efficient estimates for all domains and sample sizes. 

▪ For d̂ CALUY  we see only a small improvement in efficiency from the first run. 

▪ The modified regression estimator d̂ REGY  is not as efficient as the synthetic and small-area estimators 

but it is better than the other estimators including ˆ
dd CALUY . 

▪ There is no real change in ˆ
dd CALUY  from the first run. This is evident when the domain size and sample 

size are sufficient large. Otherwise, this is not apparent because of the wide variability of the estimator 
when the realized sample size in the domain is small. The reason why we should not see a change in 
the estimator is as follows. The dummy coded auxiliary variables in the second run produce the same 
calibration constraints at the domain level as the auxiliary variables in the first run. Therefore, there is 
no change in the definition of the estimator. The differences that we see between the first and second 
runs are simply due to the sampling variability between the two different sets of 100,000 independent 
samples. 
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Figure 2 shows two typical graphs of the absolute relative bias over the domains for the two simulation runs. 
These graphs show the results for the sample size of 464. Similar results were obtained for the other sample 

sizes. We can see that the absolute relative bias of d̂ SYNY , d̂ EBLUPY  and d̂ PEBLUPY  is greatly reduced when we 

specify the ‘correct’ auxiliary variables in the underlying model. 

 

Figure 2:  Plots of the Absolute Relative Bias of the Estimators (for sample size 464) 

In the first run, the small-area estimators show a ‘drop’ and a ‘rise’ between the groups of domains. This can 
be explained. The overall model fitted using (1, )i j i jxx  produces a regression which is close to the 

underlying model for the second group of domains. Therefore, the differences are small for the second group 
of domains. However, this overall model is quite different from the one used to generate the population in the 
first and third groups of domains. 

  

Run 1 

 
Run 2 

 

d̂ HTY :   d̂ CALUY :   ˆ
dd CALUY :   d̂ REGY :   d̂ SYNY :   d̂ EBLUPY :   d̂ PEBLUPY :  
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Figure 3 shows the coefficient of variation associated with the results in Figure 2. The coefficient of variation 

is reduced for all estimators except the HT estimator d̂ HTY  (which does not use any auxiliary information) 

and ˆ
dd CALUY  (because the auxiliary variables for this estimator are mathematically equivalent in the two 

runs). 

 

Figure 3:  Plots of the Coefficient of Variation of the Estimators (for sample size 464) 

Run 1 

 
Run 2 

 

d̂ HTY :   d̂ CALUY :   ˆ
dd CALUY :   d̂ REGY :   d̂ SYNY :   d̂ EBLUPY :   d̂ PEBLUPY :  
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This figure shows a graphical display of the results in Table 5. Under run 2, we see that d̂ SYNY , d̂ EBLUPY  and 

d̂ PEBLUPY  have the smallest ˆ( )ESTCV Y . All three lines are indistinguishable as they are very close together. 

 

Figure 4:  Plots of the Average Coefficient of Variation of the Estimators (by sample size) 

Run 1 

 
Run 2 

 

d̂ HTY :   d̂ CALUY :   ˆ
dd CALUY :   d̂ REGY :   d̂ SYNY :   d̂ EBLUPY :   d̂ PEBLUPY :  
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This figure shows a graphical display of the results in Table 6. Under run 2, we note that d̂ EBLUPY  and 

d̂ PEBLUPY  have the highest ˆ( )ESTRE Y  over the various sample sizes. 

 

Figure 5:  Plots of the Average Relative Efficiency of the Estimators (by sample size) 

Run 1 

 
Run 2 

 

d̂ HTY :   d̂ CALUY :   ˆ
dd CALUY :   d̂ REGY :   d̂ SYNY :   d̂ EBLUPY :   d̂ PEBLUPY :  
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6 Conclusions	

In summary, the comparison of the two small-area estimators reduces to the following conclusions. When we 
specify a ‘correct’ model, both estimators are equally efficient and they are better than any of the traditional 

estimators including ˆ
dCALUY . When the specify an ‘incorrect’ model, ˆ

PEBLUPY  has higher efficiency than 

ˆ
EBLUPY . This is due to the use of the design weights to provide protection against model failure. 

In those cases where we provide an ‘incorrect’ model, ˆ
dCALUY  usually performs slightly better than the 

small-area estimators. The drawback with the use of ˆ
dCALUY  is that it requires a sufficient number of units in 

each domain of interest. This is not always possible. It is also important to note that we tend to underestimate 

the variance of ˆ
dCALUY  through the use of design-based variance estimation methods such as those used in 

generalized software such as GES. These problems are not present with the small-area estimators. 
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