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Abstract. Partially penalized calibration is a method to obtain weights that allow
exact estimation of the total of several auxiliary variables and the approximate estimation
of the total of other variables. It was suggested by Bardsley and Chambers (1984), in a
model-based setting, and by Guggemos and Tillé (2010), in a calibration setting. They
proposed two different optimization problems to obtain such weights. In this paper, we
show that the two optimization problems lead to the same solution.
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1 Introduction
The calibration technique as suggested by Deville and Särndal (1992) is a widely used
method to derive weights wk that incorporate auxiliary information given by p variables
X1, . . . ,Xp. The main goal is to improve the estimation of the finite population total of
the study variable Y ,

ty =
∑
U

yk

while estimating exactly the known population totals of Xj, j = 1, . . . , p∑
k∈s

wkxk =
∑
k∈U

xk (1)

where s is a sample selected from the population U according to a sampling design p(·) and
xk = (Xk1, . . . , Xkp)

t is the vector of values of X1, . . . ,Xp recorded for the k-th individual.
In a model-based approach, a sample s satisfying the relation (1) is called a balanced
sample (Valliant et al., 2000, p. 54) and Royall and Herson (1973) have shown how
balanced sampling can protect from model misspecification.

In practice, the survey statistician usually deals with multipurpose surveys, namely
means or totals of a large number of variables are to be estimated. Thus, a large number
of auxiliary variables are to be considered and the requirement that the constraints given
by (1) are satisfied exactly becomes too severe. Guggemos and Tillé (2010) called it an
over-calibration situation. In such conditions, Bardsley and Chambers (1984) suggested
dropping the exactly balanced requirement by imposing a cost function which penalizes
large values of

∑
k∈swkxk −

∑
k∈U xk. This construction leads naturally to a ridge-type
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class of estimators (Hoerl and Kennard, 1970). The method has a design-based version
suggested by Chambers (1996) and afterwards, by Rao and Singh (1997, 2009), Beaumont
and Bocci (2008) and Guggemos and Tillé (2010). Very recently, Goga and Shehzad (2013)
give a comprehensive review of the ridge principle and of its use in survey sampling. They
also give geometrical interpretations.

An intermediate situation is when several auxiliary variables are considered important
and their totals must be estimated exactly. Bardsley and Chambers (1984), in a model-
based framework, and Guggemos and Tillé (2010), in a calibration framework, suggested
independently two optimization problems to obtain weights that satisfy this requirement.
The Guggemos and Tillé’s optimization problem states clearly the exact calibration on
certain totals, but it should be shown for the Bardsley and Chambers’s method. However,
the weights derived by the Guggemos and Tillé’s constrained optimization problem are
very complicated and so is, the weighted estimator built on them. On the contrary, the
Bardsley and Chambers’s estimator is a ridge-type regression estimator with a particular
cost matrix.

We show in this paper that the weights determined by these two different optimization
problems are in fact equal. Thus, the same weighted-estimators are obtained. A combined
strategy may then be used: weights are sought such that they verify the Guggemos and
Tillé’s constrained optimization problem but their expression is given by the one obtained
with the Bardsley and Chambers’s optimization problem.

2 Penalized or ridge estimators
Let y = (y1, . . . , yN)′ be a N × 1 vector of population values and let X = (X1, . . . ,Xp) be
the N × p matrix with x′k = (Xk1, . . . , Xkp) as rows. Let ξ be a superpopulation model
explaining the relationship between the auxiliary variables X1, . . . ,Xp and the variable of
interest Y ,

ξ : y = Xβ + ε. (2)

The errors εk, for all k ∈ U are independent of one another, with mean zero and variance
Var(εk) = σ2v2k, where vk are positive and known quantities. Let Varξ(ε) = σ2V with
V = diag(v2k)k∈U . Some further notations are needed. Let Xs = (x′k)k∈s, respectively
ys = (yk)k∈s, be the restriction of X, respectively of y, on the sample s. Let Varξ(εs) =
σ2Vs be the variance of εs, the restriction of ε on the sample s, and Varξ(εs) = σ2Vs be
the variance of εs, the restriction of ε on s = U − s.
Model-based approach

Bardsley and Chambers (1984) suggested using the weights ws = (wk)k∈s that verify
the following optimization problem

(P1) : wMB,R = argminws
(ws − 1s)

′Vs(ws − 1s) + (w′sXs − 1′UX)C(w′sXs − 1′UX)′

where 1s,1U are vectors of ones and C = diag(Cj)
p
j=1 is a diagonal matrix where Cj ≥ 0

is a user-specified cost associated with not satisfying the j-th calibration equation. The
weights wMB,R are determined by taking the derivative of the loss function

L(ws) = (ws − 1s)
′Vs(ws − 1s) + (w′sXs − 1′UX)C(w′sXs − 1′UX)′.
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with respect to ws and solving ∂L(ws)
∂ws

= 0. We get after some algebra:

wMB,R = 1s − (Vs + XsCX′s)
−1XsC(X′s1s −X′1U).

Using Lemma 3 from the Appendix, we obtain

(Vs + XsCX′s)
−1XsC = V−1s Xs(C

−1 + X′sV
−1
s Xs)

−1

leading to the following expression of the ridge model-based weights

wMB,R = 1s −V−1s Xs

(
X′sV

−1
s Xs + C−1

)−1
(X′s1s −X′1U). (3)

Thus, the ridge model-based estimator t̂MB,R of ty is given by,

t̂MB,R = w′MB,Rys =
∑
k∈s

yk +

(∑
k∈U

xk −
∑
k∈s

xk

)′
β̂MB,R (4)

where β̂MB,R = (X′sV
−1
s Xs + C−1)

−1
X′sV

−1
s ys. One may remark that β̂MB,R is in fact

the ridge-type estimator (Hoerl and Kennard, 1970) of the regression coefficient β from
the superpopulation model ξ.
Calibration approach

Let πk = Pr(k ∈ s) for k ∈ s be the first-order inclusion probability and let dk = 1/πk
be the sampling weights. Chambers (1996) and Rao and Singh (1997, 2009) suggested
finding weights that satisfy the following optimization problem

(P2) : wCAL,R = argminws
(ws−ds)

′Π̃s(ws−ds)+(w′sXs−1′UX)C(w′sXs−1′UX) (5)

where ds = (dk)k∈s and Π̃s = diag(q−1k d−1k )k∈s with qk positive constants. Usually, qk = 1
for all k ∈ s is considered. Following the same lines as in the model-based case, we
determine the penalized calibration weights as follows

wCAL,R = ds − Π̃
−1
s Xs(X

′
sΠ̃
−1
s Xs + C−1)−1(X′sds −X′1U). (6)

The penalized calibration estimator of the population total ty is given by

t̂CAL,R = (wCAL,R)′ys =
∑
k∈s

dkyk +

(∑
k∈U

xk −
∑
k∈s

dkxk

)′
β̂CAL,R (7)

where β̂CAL,R = (X′sΠ̃
−1
s Xs + C−1)−1X′sΠ̃

−1
s ys is the ridge-type estimator of β derived

in a design-based or calibration framework.
Considering a cost Cj going to zero means discarding from (1) the constraint corre-

sponding to Xj and considering a cost Cj going to infinity, means satisfying this constraint
exactly. This is true for the model-based approach as well as for the calibration approach.
In practice, one needs only to specify the inverse of the matrix C in order to compute
the penalized weights (see relations 3 and 6). So, if we desire having exact calibration on
the total of Xj, then we consider C−1j = 0 unless we take a large C−1j . This idea has been
used by Bardsley and Chambers (1984) to obtain partially penalized estimators and it is
developed in the next section.

3



3 Partially penalized estimators

Consider now that we want to estimate exactly the total of q auxiliary variables contained
in X and that we are less restrictive concerning the estimation of the other p− q totals.
We may consider that the matrix X has the following expression after re-ordering the
variables X1, . . . ,Xp,

X =
(
X̃1, X̃2

)
,

where X̃1 = [X1, . . . ,Xq] and X̃2 = [Xq+1, . . . ,Xp]. The variables contained in X̃1 may be
related for example to socio-demographic criteria. Let the cost matrix be of the following
form,

C =

(
C1 0(q,p−q)
0(p−q,p) C2

)
,

where C1, respectively C2, is the relative diagonal cost matrix of size q × q associated to

X̃1, respectively of size (p− q)× (p− q) associated to X̃2.

In order to estimate exactly the total of variables from X̃1, Bardsley and Chambers
(1984) suggested using the optimization problem (P1) for a particular cost matrix C. The
partially penalized ridge weights may be derived as solution of the following optimization
problem

(P1’) : w(1)
ppr = argminws

(ws − 1s)
′Vs(ws − 1s) + (w′sXs − 1′UX)C(w′sXs − 1′UX)′

with the inverse cost matrix given by

C−1 =

(
0(q,q) 0(q,p−q)
0(p−q,p) C−12

)
(8)

The optimization problem (P1’) is a particular case of (P1). Thus, the weights w
(1)
ppr

may be determined from relation (3) for the inverse cost matrix given in (8),

w(1)
ppr

= 1s −
(
V−1s X̃1s, V−1s X̃2s

)(
X̃′1sV

−1
s X̃1s X̃′1sV

−1
s X̃2s

X̃′2sV
−1
s X̃1s X̃′2sV

−1
s X̃2s + C−12

)−1(
X̃′1s1s − X̃′11U
X̃′2s1s − X̃′21U

)
,

(9)

where X̃1s, respectively X̃2s, is the sample restriction of X̃1, respectively of X̃2. The total
ty is estimated by

t̂(1)ppr = (w(1)
ppr)

′ys =
∑
k∈s

yk +

(∑
k∈U

xk −
∑
k∈s

xk

)′
β̂MB,R
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where β̂MB,R =

(
X′sV

−1
s Xs +

(
0 0
0 C−12

))−1
X′sV

−1
s ys.

One may verify (see also Beaumont and Bocci, 2008) that using the weights w
(1)
ppr allows

estimating exactly the total of the variables from X̃1, namely we have

(w(1)
ppr)

′X̃1s = 1′UX̃1. (10)

In a design-based framework, Guggemos and Tillé (2010) suggested determining weights
that are as close as possible to the sampling weights dk, k ∈ s while exactly estimating the

total of the auxiliary variables contained in X̃1 and estimating approximatively the total

of the variables from X̃2. We transpose the Guggemos and Tillé’s idea in a model-based
framework. This means that we are looking for weights that satisfy

(P2’) : w(2)
ppr = argminws

(ws − 1s)
′Vs(ws − 1s) + (w′sX̃2s − 1′UX̃2)C2(w

′
sX̃2s − 1′UX̃2)

′

subject to

w′sX̃1s = 1′UX̃1. (11)

The Lagrangian function is

L(ws,λ) = (ws−1s)
′Vs(ws−1s)+(w′sX̃2s−1′UX̃2)C2(w

′
sX̃2s−1′UX̃2)

′−(w′sX̃1s−1′UX̃1)λ.

and the solution is obtained by solving ∂L(ws,λ)
∂ws

= 0 under the constraint w′sX̃1s = 1′UX̃1

(Guggemos and Tillé, 2010). We obtain

w(2)
ppr

= Ω−1s

[
X̃1s(X̃

′
1sΩ

−1
s X̃1s)

−1
(
X̃′11U − X̃′1sΩ

−1
s (Vs1s + X̃2sC2X̃

′
21U)

)
+ Vs1s + X̃2sC2X̃

′
21U

]
(12)

where Ωs = Vs + X̃2sC2X̃
′
2s. The partial penalized estimator for the total ty becomes

t̂(2)ppr = (w(2)
ppr)

′ys = 1′sys + (1′UX̃1 − 1′sX̃1s)b̂ + (1′UX̃2 − 1′sX̃2s)û (13)

where b̂ =
(
X̃′1sΩ

−1
s X̃1s

)−1
X̃′1sΩ

−1
s ys, and û = C2X̃

′
2sΩ

−1
s (ys − X̃1sb̂).

Remark 1: By imposing (11), the constrained optimization problem (P2’) states clearly

the fact that the weights allow exact calibration to X̃1 while this property should be shown in

the case of (P1’) (relation 10). However, the estimator t̂
(2)
ppr has a much more complicated

formula compared to t̂
(1)
ppr.

Remark 2: Under a calibration approach, the weights may be derived from the optimization

problem (P1’) or (P2’) with Vs replaced by Π̃s and 1s by ds.
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Remark 3: Park and Yang (2008) suggested the optimization problem (P2’) in order to
derive weights for estimating the mean ȳU =

∑
U yk/N of the variable of interest Y . They

used the model ξ given in (2) with an intercept and they looked for a weighted estimator
with sum of weights equal to the unity and being as close as possible to the Hájek (1971)
weights,

αi =
π−1i∑
s

1
πi

.

This means that the optimization problem (P2) is used with 1s replaced by αs = (αi)i∈s.
We give now the main result of the paper. We prove in the below result that the weights

w
(1)
ppr and w

(2)
ppr are equal. Thus, t̂

(1)
ppr = t̂

(2)
ppr and one may use a combined strategy: the

constrained optimization problem (P2’) with the weights given by the constrained opti-

mization problem (P1’), namely w
(1)
ppr.

Result The ridge weights w
(1)
ppr verifying the optimization problem (P1’) are equal to the

weights w
(2)
ppr that verify the optimization problem (P2’).

Proof Let w
(1)
ppr given by (9) and let R = C−1 + X′sV

−1
s Xs with C−1 given by (8). In

order to prove the result, we need to compute the inverse of R,

R−1 =

(
X̃′1sV

−1
s X̃1s X̃′1sV

−1
s X̃2s

X̃′2sV
−1
s X̃1s C−12 + X̃′2sV

−1
s X̃2s

)−1
:=

(
A B
B′ L

)−1
with

A = X̃′1sV
−1
s X̃1s

B = X̃′1sV
−1
s X̃2s

L = C−12 + X̃′2sV
−1
s X̃2s

Using Lemma 1 from the Appendix, we get

R−1 =

(
A−1 + FE−1F

′ −FE−1

−E−1F′ E−1

)
(14)

where E = L−B′A−1B and F = A−1B. We may write A−1 + FE−1F
′

in a shorter form.
We have Ωs = Vs + X̃2sC2X̃

′
2s and its inverse may be computed by using Lemma 2,

Ω−1s = V−1s −V−1s X̃2s(C
−1
2 + X̃′2sV

−1
s X̃2s)

−1X̃′2sV
−1
s . (15)

We multiply Ω−1s at left by X̃′1s and at right by X̃1s. We get X̃′1sΩ
−1
s X̃1s = A−BL−1B′

and its inverse may be determined using again Lemma 2,

(X̃′1sΩ
−1
s X̃1s)

−1 = A−1 + A−1B(L−B′A−1B)−1B′A

= A−1 + FE−1F
′

(16)
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For ease of notation, denote H = X̃′1sΩ
−1
s X̃1s. The inverse R−1 given in relation (14)

becomes

R−1 =

(
H−1 −FE−1

−E−1F′ E−1

)
(17)

For the above value of R−1, the partially penalized calibrated weights given in expression
(9) become,

w(1)
ppr = 1s −V−1s Xs(C

−1 + X′sV
−1
s Xs)

−1(X′s1s −X′1U)

= 1s −V−1s (X̃1s, X̃2s)

(
H−1 −FE−1

−E−1F′ E−1

)(
X̃′1s1s − X̃′11U
X̃′2s1s − X̃′21U

)
Consider now the optimization problem P2. The weights w

(2)
ppr are given in (12),

w(2)
ppr

= Ω−1s

X̃1sH
−1

X̃′11U − X̃′1sΩ
−1
s (Vs1s + X̃2sC2X̃

′
21U)︸ ︷︷ ︸

(∗)

+ Vs1s + X̃2sC2X̃
′
21U︸ ︷︷ ︸

(∗∗)


We have that Vs = Ωs − X̃2sC2X̃

′
2s. The terms (∗) and (∗∗) become

(∗) = X̃′1s1s + X̃′1sΩ
−1
s X̃2sC2

(
X̃′21U − X̃′2s1s

)
(18)

(∗∗) = Ωs1s + X̃2sC2(X̃
′
21U − X̃′2s1s). (19)

From (18) and (19), we get after some algebra,

w(2)
ppr = 1s + Ω−1s X̃1sH

−1
(
X̃′11U − X̃′1s1s

)
+ (Ω−1s X̃2sC2 −Ω−1s X̃1sH

−1X̃′1sΩ
−1
s X̃2sC2)

(
X̃′21U − X̃′2s1s

)
. (20)

Furthermore, we obtain from (15) that

Ω−1s X̃1sH
−1 = V−1s (X̃1sH

−1 − X̃2sL
−1B′H−1) (21)

and by Lemma 3,

Ω−1s X̃2sC2 = V−1s X̃2s(C
−1
2 + X̃′2sV

−1
s X̃′2s)

−1

= V−1s X̃2sL
−1. (22)

Hence, relations (21) and (22) yield

Ω−1s X̃1sH
−1X̃′1sΩ

−1
s X̃2sC2 = V−1s (X̃1sH

−1BL−1 − X̃2sL
−1B′H−1BL−1). (23)
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Finally, using relations (21), (22) and (23) in equation (20) yields

w(2)
ppr = 1s −V−1s

[(
X̃1sH

−1 − X̃2sL
−1B′H−1

)(
X̃′1s1s − X̃′11U

)
−

(
−X̃1sH

−1BL−1 + X̃2s

(
L−1 + L−1B′H−1BL−1

))(
X̃′2s1s − X̃′21U

)]
= 1s −V−1s (X̃1s, X̃2s)

(
H−1 −H−1BL−1

−L−1B′H−1 L−1 + L−1B′H−1BL−1

)(
X̃′1s1s − X̃′11U
X̃′2s1s − X̃′21U

)
= 1s −V−1s (X̃1s, X̃2s)

(
H−1 −FE−1

−E−1F′ E−1

)(
X̃′1s1s − X̃′11U
X̃′2s1s − X̃′21U

)
= w(1)

ppr

since E−1F′ = L−1B′H−1 and E−1 = L−1 + L−1B′H−1BL−1.

Appendix
We give below several lemmas useful for the proof of the result.

Lemma 1 (Rao, 1965; p.29). Let A and L be symmetric matrices such that the inverses
which occur in the below expression exist. Then,(

A B
B′ L

)−1
=

(
A−1 + FE−1F′ −FE−1

−E−1F′ E−1

)
where E = L−B′A−1B and F = A−1B.

Lemma 2 (Rao, 1965; p.29) Let A and L be nonsingular matrices of orders m and n
and B be m× n matrix. Then,

(A + BLB′)−1 = A−1 −A−1B(B′A−1B + L−1)−1B′A−1.

As a consequence, we get

Lemma 3 (Henderson and Searle, 1981). Let A and L be nonsingular matrices of orders
m and n and B be m× n matrix. Then,

(A + BLB′)−1BL = A−1B(L−1 + B′A−1B)−1.
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