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Résumé. La coordination des échantillons a comme but de créer une dépendance
probabiliste entre deux ou plusieurs échantillons tirés dans des populations finies qui se
chevauchent. Cette dépendance maximise ou minimise la taille de l’échantillon commun,
de façon à ce que les échantillons d’enquêtes différentes se recouvrent le plus possible ou
le moins possible. Dans le premier cas on parle d’une coordination positive, et dans le
deuxième cas d’une coordination négative. La coordination positive est surtout utilisée
pour améliorer la qualité des estimations. A son tour, la coordination négative est em-
ployée principalement pour diminuer la charge de réponse des unités sélectionnées dans
plusieurs échantillons. Nous montrons deux méthodes pour coordonner des échantillons
de type Poisson conditionnels à la taille. Le plan de Poisson conditionnel à la taille a des
propriétés théoriques importantes comme le fait de maximiser l’entropie dans la classe
des plans de sondages ayant les mêmes probabilités d’inclusion. Les méthodes proposées
sont évaluées en utilisant des simulations de Monte Carlo et sont comparées avec d’autres
méthodes existantes dans la littérature.

Mots-clés. coordination des échantillons, taux de recouvrement, nombres aléatoires
permanents, plans à probabilités inégales

1 Introduction

Consider two finite overlapping populations U1 and U2. Two sampling designs p1 and p2
of fixed size n1 and n2 are defined on these two populations, respectively. Let S1 and
S2 be the sets of all possible samples defined by p1 and p2 on U1 and U2, respectively.
Samples defined on S1 are denoted s1i, i = 1, 2, . . . ,m, while samples defined on S2 are
denoted s2j, j = 1, 2, . . . , q. Our general notation for samples is s1 ∈ S1 and s2 ∈ S2. We
note π1k =

∑
s1∋k,s1∈S1

p1(s1), k ∈ U1 and π2k =
∑

s2∋k,s2∈S2
p2(s2), k ∈ U2 the first-order

inclusion probabilities of unit k in the two samples, respectively. For simplicity, let U be
the union of U1 and U2. Thus, for units k ∈ U \U1, we set π1k = 0, while for k ∈ U \U2, we
set π2k = 0. An overall sampling design p is defined on S1×S2, with marginals p1 and p2.
The overall sampling design is said to be coordinated if p(s1i, s2j) = pij ̸= p1(s1i)p2(s2j),
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i.e. if the two samples are not selected independently. The joint inclusion probability of
unit k in s1 and s2 is denoted

π1,2
k = P (k ∈ s1, k ∈ s2) =

∑
s1i∩s2j∋k

s1i∈S1,s2j∈S2

pij.

Let cij be the overlap size of samples s1i and s2j cij = |s1i∩ s2j|, where |A| denotes the
cardinality of a set A. In general, the overlap size cij is random. Let c denote the random
variable called ‘overlap size’. A measure of the coordination degree between two samples
is given by E(c) =

∑m
i=1

∑q
j=1 cijpij =

∑
k∈U π1,2

k . In positive coordination, the goal is to
maximize E(c), while in negative coordination, we want to minimize it. Bounds for E(c)
exist. They are determined by the Fréchet bounds of the joint inclusion probabilities π1,2

k∑
k∈U

max(0, π1k + π2k − 1) ≤ E(c) ≤
∑
k∈U

min(π1k, π2k). (1)

The the left side-part in (1) is called the Absolute Lower Bound (ALB) and the right side-
part in (1) the Absolute Upper Bound (AUB). Ideally, in positive coordination we want
to achieve the AUB, while in negative coordination the ALB. Few methods achieve these
bounds. In positive coordination, Poisson sampling with permanent random numbers
(PRN; Brewer, Early, and Joyce, 1972) applied in both selections provides an important
property: π1,2

k = min(π1k, π2k), and thus the AUB is reached. The sample sizes are,
however, random for s1, s2 and s1 ∩ s2.

While all sample coordination methods seek to increase or decrease the sample overlap,
there are different ways to measure the effectiveness of the positive or negative coordina-
tion (e.g. the size of the expected overlap or the expected load of a unit which is defined as
the sum of its selection probabilities in the surveys). Consequently, there is not a unique
definition of optimality in sample coordination. We focus on methods which try to reach
the AUB.

We consider the coordination of Conditional Poisson (CP) samples (or maximum fixed-
size entropy samples) over time or simultaneously. CP-sampling has an important prop-
erty: it maximizes the entropy in the class of fixed-size πps designs with the same inclusion
probabilities. This property has important consequences on the sample selection random-
ness, on the variance estimation and on the convergence to a normal distribution of the
Horvitz-Thompson estimator. Methods to coordinate CP-samples have not yet been in-
troduced in the literature. We proposed two methods. The methods are evaluated using
the size of the expected sample overlap, and are compared with their competitors. We fo-
cus on positive coordination, but negative coordination is also possible using the proposed
methods.
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2 Conditional Poisson sampling

Conditional Poisson sampling is a fixed-size πps sampling design. It was introduced by
Hájek (1964) as a modification of the classical Poisson sampling. Different implemen-
tations of CP-sampling are available (see e.g. Tillé, 2006 and Bondesson, Traat, and
Lundqvist, 2006). The initial implementation of CP-sampling given by (Hájek, 1964,
1981) uses a rejective algorithm to obtain a sample of size n as follows. Draw Poisson
samples with parameters 0 ≤ pk ≤ 1, k = 1, 2, . . . , N until we get a sample of size n, i.e.
we condition the Poisson design on the fixed sample size n. Usually it is assumed that∑N

k=1 pk = n because it maximizes the probability of obtaining samples of size n. The

assumption
∑N

k=1 pk = n is, however, not restrictive. If it is not satisfied, the pks can be
transformed to satisfy that condition, see e.g. Broström and Nilsson (2000) or Tillé (2006),
p. 89. Assume that

∑N
k=1 pk ̸= n, then transformed parameters p′k, k = 1, 2, . . . , N , with

sum n can be calculated. As long as
p′k

1−p′k
∝ pk

1−pk
, the design remains unchanged. We

can let p′k/(1− p′k) = dpk/(1− pk), which imply p′k =
dpk

1−pk+dpk
, and then find d such that∑N

k=1 p
′
k = n.

When implementing CP-sampling of size n with parameters pk,
∑N

k=1 pk = n, the true
inclusion probabilities will only approximately equal the pks. The first and second-order
inclusion probabilities for CP-sampling can be calculated recursively from pk.

It is also possible to adjust the pks to obtain desired inclusion probabilities using
an iterative algorithm (Aires, 2000). Let π

CP (n,t)
k be the achieved inclusion probabilities

with the parameters ptk for CP-sampling with sample size n, where t denotes the current
iteration of the algorithm, and let p0k = πk. Then, practically, only a few iterations of

ptk = pt−1
k + (πk − π

CP (n,t−1)
k ), (2)

is enough to find parameters ptk that yield inclusion probabilities πk.

3 Coordination of CP-samples using list-sequential

implementation

List-sequential implementations of CP-sampling can be found in e.g. Chen and Liu (1997),
Traat, Bondesson, and Meister (2004) and Tillé (2006). The units are sampled list-
sequentially with start from unit 1. Unit k should be selected in the sample with an
updated probability, here denoted by π

(k−1)
k . Thus, we select the unit k in the sample if

rk ≤ π
(k−1)
k , where rk is a random number from U(0, 1). The random number rk may be

a permanent random number for unit k (and it will be used in all coordination process).
We assume that r1, . . . , rk, . . . , rN are independent.

Let Ik ∼ Bin(1, pk), k = 1, 2, . . . , N be independent random variables, where pks are
the Poisson parameters and

∑
k∈U pk = n. The updated probabilities can be calculated
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as follows π
(k−1)
k = P (Ik = 1 |Sk = n− nk−1 ) , where Sk =

∑N
ℓ=k Iℓ, nk =

∑k
ℓ=1 Iℓ, and

n0 = 0. The updated probabilities can be rewritten as π
(k−1)
k = pk · P (Sk+1=n−nk−1−1)

P (Sk=n−nk−1)
,

where SN+1 = 0. The probabilities P (Sk = a) for given k and a can easily be calculated
recursively. The start is given by P (SN = 0) = 1 − pN and P (SN = 1) = pN . Then, for
k = N − 1, N − 2, . . . , 1 and a = 0, 1, . . . , N − k + 1, we have P (Sk = a) = pkP (Sk+1 =
a− 1) + (1− pk)P (Sk+1 = a), if a > 0, and P (Sk = a) = (1− pk)P (Sk+1 = a), if a = 0.
If the population is very large, the recursions may take some time. Using this method
we can calculate the updated probabilities π

(k−1)
k , for k = 1, 2, . . . , N , and directly get a

sample.
To coordinate two CP-samples with inclusion probabilities π1k and π2k, k = 1, 2, ..., N ,

we use the algorithm given by Expression (2) to find the corresponding Poisson parameters
p1k and p2k, respectively. We then apply the list-sequential method with the permanent
random numbers rk in each selection. Even though it is logical to try to coordinate
CP-samples in this manner, the approach seems to be new. In fact, any design with a
list-sequential implementation can easily be coordinated by the use of PRN.

Remark 1 Negative coordination can be achieved using the list-sequential method. For
negative coordination of two samples, antithetic random numbers r∗k = 1− rk can be used
in the second selection. For β > 2 samples, new random numbers can be constructed by
shifting the PRN an amount α to the right before the selection of each sample different
from the first one: rk + α. A possible choice of α is the inverse of the number of samples
to coordinate (see Ohlsson, 2000). If rk +α is larger than 1, we can replace it by (rk +α)
mod 1, where mod is the modulo operator.

4 An approximative method to coordinate CP-samples

Here we suggest a new approximative method to coordinate two CP-samples that does
not use permanent random numbers, but instead uses updated parameters for the sec-
ond selection. In the first selection, we select a CP-sample s1 of size n1 with inclusion
probabilities π1k, k = 1, 2, ..., N1, using any suitable method to obtain a CP-sample.

In the second selection we select a CP-sample s2 of size n2 with updated parameters
p2k|s1 , k = 1, 2, ..., N2. If π1k ≤ π2k, then

p2k|s1 =

{
1 if k ∈ s1
(π2k − π1k)/(1− π1k) if k /∈ s1

,

and if π1k > π2k, then

p2k|s1 =

{
π2k/π1k if k ∈ s1
0 if k /∈ s1

.

The updated parameters are only used for units k ∈ U1; for new units k /∈ U1, we let
p2k|s1 = π2k.
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If we could achieve inclusion probabilities equal to these parameters, we get the pre-
scribed inclusion probabilities π2k. Then it also follows that π1,2

k = min(π1k, π2k) and the
expected overlap is maximized (the AUB is achieved). However, the parameters p2k|s1
cannot be used as inclusion probabilities for a fixed size design because they do not in
general sum to n2 for a given s1. Only the sum of the expected value of the p2k|s1 equals
n2. Thus it is impossible to achieve inclusion probabilities equal to these parameters for
a given s1 if only samples of size n2 are accepted. If a rejective implementation of CP-
sampling is used, we can maximize the probability of obtaining a sample of size n2 by
using transformed parameters with sum n2 (see Section 2).

Some situations may arise where it is impossible to draw a sample s2 using the pa-
rameters p2k|s1 . Consider, for example, the case where N = 6, n1 = n2 = 3, π1 =
(0.3, 0.3, 0.3, 0.7, 0.7, 0.7)′, π2 = (0.4, 0.4, 0.4, 0.4, 0.4, 1)′ and the sample s1 is {1, 2, 3}.
The parameters p2k|s1 are (1, 1, 1, 0, 0, 1)′, and they do not allow the selection of a sample
s2 of size 3. In these unlikely situations, it will be impossible to achieve a CP-sample of
size n2 using the parameters p2k|s1 because either more than n2 of the parameters equal
1 or more than N2 − n2 equal 0. In such cases, we suggest the following modification to
the parameters. If there are more than n2 of the p2k|s1 that equal 1, we use

p∗2k|s1 =


0 if p2k|s1 < 1
1 if π2k = 1

n2−|{j:π2j=1}|
|{j: p2j|s1=1, π2j<1}| otherwise

.

If there are more than N2 − n2 of the p2k|s1 that equal 0, we use

p∗2k|s1 =


1 if p2k|s1 > 0
0 if π2k = 0
n2−|{j: p2j|s1>0}|

|{j: p2j|s1=0, π2j>0}| otherwise
,

where |{·}| is the size of {·}. The p∗2k|s1 sum to n2.

Remark 2 The second proposed method is an approximative one because the second sam-
pling design is not exactly respected. For small populations and samples, there are differ-
ences between the inclusion probabilities provided by the proposed sampling design in the
second occasion and those of the corresponding CP-sampling. The first and second-order
inclusion probabilities of the proposed design are denoted by π̃2k and π̃2kℓ, respectively.
However, they cannot be directly computed. The probabilities π̃2k and π̃2kℓ are estimated

through simulation and are denoted by ̂̃π2k and ̂̃π2kℓ, respectively. Simulation not shown
here suggest that the differences between the inclusion probabilities of the proposed design
and the prescribed inclusion probabilities π2k and π2kℓ seem to vanish as the population and
sample size increase. For example, for a population of size N = 5 and n1 = n2 = 2, the

highest absolute difference between ̂̃π2k and π2k is about 0.02, while for the second-order
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inclusion probabilities ̂̃π2kℓ and π2kℓ is about 0.07. For a population of size N = 1000 and

n1 = 100, n2 = 250, the highest absolute difference between ̂̃π2k and π2k is about 0.0015;

the highest absolute difference between ̂̃π2kℓ and π2kℓ is about 0.0016.
Performed simulations not shown here indicate that the estimators based on the pro-

posed design in the second scheme and using the prescribed inclusion probabilities π2k and
π2kℓ do not suffer from much larger variance than those computed using CP-sampling. A
slight bias is present in estimations for small populations and samples, but its values were
small in our simulations.

5 Examples

To check the coordination performance of the two proposed methods, we also consider
Poisson sampling with PRN (Brewer, Early, and Joyce, 1972) and Pareto sampling with
PRN (Rosén, 1997a, 1997b). Two simulation studies are shown below using the following
five different sampling schemes: a) two CP-samples are drawn independently (IND) (using
the rejective method for both); b) two Poisson samples are drawn using Poisson sampling
(POI) with PRN; c) two Pareto samples are drawn using Pareto sampling (PAR) with
PRN; d) two CP-samples are drawn using the list-sequential method (SEQ) with PRN; e)
the first sample is a CP one drawn using the rejective method; the second one is selected
using the rejective method with updated parameters as described in Section 4. We call
this method the mixed one (MIX).

For the methods a), d) and e) (only for the first sample) the parameters p1 and p2
were computed from π1k and π2k respectively and used in sample selection. A number
of 105 simulation runs was used to compute the expected overlap of two samples drawn
using the five methods. N random numbers from U(0, 1) distribution were generated in
each simulation, and used as PRN in each method. The expected overlap for each method
was computed using the formula Esim(c) =

1
m

∑m
ℓ=1 c

1,2
ℓ , where m = 105 is the number of

runs, c1,2ℓ = |s1ℓ∩ s2ℓ|, and s1ℓ, s2ℓ, are the samples drawn in the ℓth run of the simulation.
The Monte Carlo variance of the overlap between samples was also reported in the tables
below Vsim(c) =

1
m−1

∑m
ℓ=1(c

1,2
ℓ − Esim(c))

2.
Example 1: We consider the well known MU284 population. Changes in population

are assumed. We consider the region 2 from the MU284 population as current stratum,
where 50% of the units are new in the second occasion (births), and 50% of the units
change the stratum (deaths). We have considered that the births units were initially in
the third stratum (the third region). Thus, 24 units have been randomly drawn from the
third stratum using simple random sampling without replacement; these units represent
the births for the second stratum. The number of persistent units in the two occasions is
24. The overall population is formed by the persistents, births and deaths; its size is 72.
Samples of expected sizes n1 = 10, n2 = 6 respectively are drawn from this population
of size N = 72. Table 1 shows the expected overlap and variance for each method. The
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mixed method shows an expected overlap equal to the theoretical AUB, and provides
better performance than Pareto sampling with PRN. The sequential method performs
worse than Pareto sampling concerning the expected overlap. The differences for Vsim(c)
in Table 1 (except IND and POI) may seem too small to be practically significant.

Example 2: We consider an extreme situation for the mixed method. It is a case
where it is not always possible to directly draw a sample s2 using the parameters p2k|s1 .
Instead a sample s2 is selected using the parameters p∗2k|s1 . We have N = 6, n1 = n2 = 3,

π1 = (0.3, 0.3, 0.3, 0.7, 0.7, 0.7)′, π2 = (0.4, 0.4, 0.4, 0.4, 0.4, 1)′. Table 1 gives the expected
overlap and variance for each method. The mixed method shows an expected overlap
larger than the AUB because the first-order inclusion probabilities are not exactly re-

spected for the second design. The estimated first-order inclusion probabilities (̂̃π2k) for
the second design are the following: 0.3722, 0.3729, 0.3727, 0.4417, 0.4405, 1.0000. By

computing
∑

k∈U min(π1k, ̂̃π2k) we obtain the expected overlap of the mixed method to
be 2.4822, matching the value of Esim(c) for the mixed method given in Table 1.

Table 1: Expected overlap and variance based on 105 simulation runs

Example 1 Example 2
Method Esim(c) Vsim(c) Esim(c) Vsim(c)

IND 1.55 0.78 1.62 0.44
POI 2.79 1.94 2.40 1.33
PAR 2.76 1.04 2.33 0.32
SEQ 2.55 1.00 2.32 0.35
MIX 2.79 0.99 2.48 0.30

AUB 2.79 2.40

6 Conclusions

The first method is based on the list-sequential implementation of CP-sampling. It is a
PRN method and has the advantage to preserve exactly the second sampling design (both
samples are CP). It provides a good level of expected overlap as shown in our examples,
but smaller than the AUB. This is mainly due to the differences between selection and
inclusion probabilities.

The second method is an approximative one because the second sampling design is not
exactly respected. For small populations and samples, there are differences between the
inclusion probabilities provided by the proposed sampling design in the second occasion
and those of the corresponding CP-sampling. In our examples, these differences seem to
vanish as the population and sample size increase.

The mixed method shows high performance comparable to Poisson sampling with
PRN. It has the advantage of allowing fixed sample sizes comparing to Poisson sampling
with PRN. Due to this fact, the mixed method provides smaller overlap variance than
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Poisson sampling with PRN, as also shown in our simulations. Compared to Pareto
sampling with PRN, the mixed method performs better in simulations, but it has the
disadvantage of providing only an approximate CP-sample in the second selection. On
the other hand, Pareto sampling does not possess the maximum entropy property for
given first-order inclusion probabilities.

Based on the criterion to achieve the AUB, the second sampling in the mixed method
is an optimal sampling design for the first one. In our paper, the first sample is a CP-
sample. It is possible to apply the mixed method for any type of fixed-size sampling
design used in the first selection. Hence, the method allows to use e.g. a balanced sample
in the first selection.
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