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Abstract. Model assisted estimators which make use of auxiliary information through
linear models have been extensively used in small area estimation and their efficiency
relies heavily on a correct specification of the linking model. Basic area-level and unit-
level models have been considered and the classical approach is to use empirical best
linear unbiased predictors (EBLUPs) of small area means. The EBLUPs are efficient
under normality assumptions but their performance might be affected by the presence of
representative outliers in the data, or departures from the normal distribution assumption
of the random effects. In recent years several robust techniques have been developed for
a unit- level linear mixed model. We relax the assumption of linear regression for the
fixed part of the model and using a P-spline mixed model approximation we develop a
robust empirical best linear unbiased predictor of the small area mean. To estimate its
mean squared error, we adopt a conditional bootstrap approach. The performance of our
method is demonstrated in a simulation study.
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1 Introduction

The interest in small area estimation has been increasing in the past decades and a popular
model which is used is the nested error regression model. If y denotes the variable of
interest, the model is of the form

yij = xt
ijβ + vi + eij, i = 1, . . . ,m; j = 1, . . . , Ni, (1)

where xij = (1, x1ij, . . . , xpij)
t, m is the number of small areas, Ni is the number of

population units j in area i, vi ∼iid (0, σ2
v) is the random small area effects and eij ∼iid

(0, σ2
e) are unit errors assumed to be independent of the vi.
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The population values of the auxiliary variables x1, . . . , xp for each area i are assumed to
be known.

A sample of size ni is collected from each area and the observed variables are y and the
covariates x1, . . . , xp. We assume that the sampling is non-informative so (1) also holds
for the sample.

Given θ = (σ2
v , σ

2
e)t, the best linear unbiased predictor (BLUP) of the area mean Ȳi,

which is also an empirical Bayes (EB) predictor under normality can be obtained from
the sample model. If the true θ is not known, the empirical BLUP (EBLUP) of Ȳi is
obtained by replacing θ with a consistent estimator θ̂.

The assumption of a parametric mean function of the form m(x,β) = xtβ in (1) can
be relaxed by assuming that the unknown function m0(x) can be well approximated by a
penalized spline (P-spline) function with a truncated polynomial spline basis. Opsomer et
al. (2008) extended the P-spline model to small area estimation by including the random
area effects vi and obtained the EBLUP of Ȳi

yij = xt
ijβ + wt

iju + vi + eij, j = 1, . . . , ni; i = 1, . . . ,m, (2)

where xij = (1, xij, . . . , x
h
ij)

t, and wij = {(xij− q1)h+, . . . , (xij− qK)h+}t = (wij1, . . . , wijK)t.
They also studied the estimation of MSPE of the EBLUP.

The EBLUP can be sensitive to outliers in vi and eij. In the case of EBLUP under
the nested error regression model (1), Sinha and Rao (2009) developed a robust EBLUP
method and demonstrated its advantages over the EBLUP in the presence of outliers in
the random small area effects and/or unit level errors in the model. Our goal is to obtain a
robust EBLUP (REBLUP) of the mean Ȳi under a P-spline nested error regression model.

In matrix form, the P-spline model is a linear mixed model

y = Xβ + Wu + Zv + e,

The algorithm for obtaining the REBLUPs of u, v and robust estimators of β, σ2
u, σ2

v

and σ2
e simultaneously is adapted from Fellner (1986).

Step 1. Given a starting value θ(0) of θ = (σ2
u, σ

2
v , σ

2
e)t, solve the mixed model equations

to obtain β(0), u(0), v(0) and compute e(0) = y −Xβ(0) −Wu(0) − Zv(0).
Step 2. Using estimates from Step 1 update the estimate θ(1) of θ.
Step 3. Compute the pseudo-values

ỹ = Xβ + Wu + Zv + σeΨ(σ−1
e e), (3)

0̃v = v − σvΨ(σ−1
v v), (4)

where Ψ(u) = (ψ(u1), ψ(u2), . . .)t, using β(0), u(0), v(0) and e(0) for β, u, v and e, and
θ(1) for θ.
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Step 4. Solve the robust mixed model equations σ−2
e XtX σ−2

e XtW σ−2
e XtZ

σ−2
e WtX σ−2

u IK + σ−2
e WtW σ−2

e WtZ
σ−2
e ZtX σ−2

e ZtW σ−2
v Im + σ−2

e ZtZ

 β
u
v

 =

 σ−2
e Xtỹ

σ−2
e Wtỹ

σ−2
e Ztỹ + σ−2

v 0̃v

 ,
(5)

using θ(1) and the corresponding pseudo-values obtained in Step 3. This leads to new
values β(1), u(1), v(1) and using these values compute e(1) = ỹ(1)−Xβ(1)−Wu(1)−Zv(1).

The steps are repeated until convergence is achieved. At convergence, robust estima-
tors β̂F , σ̂2

uF , σ̂2
vF and σ̂2

eF and REBLUPs ûF , v̂F are.
The equations (5) reduce to the mixed model equations when Ψ(σ−1

e e) = σ−1
e e and

Ψ(σ−1
v v) = σ−1

v v, and 0̃v reduces to 0.
The REBLUP of Ȳi is given by

µ̂iF =
1

Ni

(∑
j∈si

yij +
∑
j∈s̄i

ŷijF

)
, (6)

where ŷijF = xt
ijβ̂F + wt

ijûF + v̂iF .
For a non-sampled area l, the resulting predictor of Ȳl is

µ̂lF =
1

Nl

Nl∑
j=1

ŷljF = X̄t
lβ̂F + W̄t

l ûF . (7)

ŷljF = xt
ljβ̂F + wt

ljûF , j = 1, . . . , Nl is the synthetic predictor of ylj.
Due to the complex form of the REBLUP of the area mean Ȳi and the lack of knowledge

of the underlying distributions of u, vi and ei, MSPE estimation becomes difficult. We
follow the Sinha-Rao method to obtain a conditional bootstrap estimator of MSPE of µ̂iF

under the spline mixed model.
We generate v∗ and e∗ from N(0, σ̂2

vF Im) and N(0, σ̂2
eF In) respectively, and obtain

bootstrap responses y∗ij = xt
ijβ̂F + wt

ijûF + v∗i + e∗ij, j = 1, . . . , Ni and i = 1, . . . ,m that
are free of outliers. Using the corresponding bootstrap sample data {(y∗ij,xij,wij, j ∈
si; i = 1, . . . ,m)} we obtain bootstrap estimates β̂

∗
, û∗ and v̂∗i and the predicted values

ŷ∗ij = xt
ijβ̂
∗

+ wt
ijû
∗ + v̂∗i for j ∈ s̄i, where β̂

∗
is the BLUE of β and û∗ and v̂∗i are the

EBLUPs of u and vi, respectively. The resulting bootstrap REBLUP of Ȳi is

µ̂∗i =
1

Ni

(∑
j∈si

y∗ij +
∑
j∈s̄i

ŷ∗ij

)

and the bootstrap population mean is Ȳ ∗i = N−1
i

∑Ni

j=1 y
∗
ij. The use of EBLUPs rather

than REBLUPs is reasonable because the bootstrap sample is free of outliers. Repeating
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the bootstrap operation B times, the bootstrap estimator of the MSPE of µ̂iF is given by

M̂boot(µ̂iF ) =
1

B

B∑
i=1

{µ̂∗i (b)− Ȳ ∗i (b)}2, (8)

where µ̂∗i (b) and Ȳ ∗i (b) are the values of µ̂∗i and Ȳ ∗i for the b-th bootstrap replicate and
µ̂iF is given by (6).

We report some results of a simulation study on the performance of the proposed
P-spline REBLUP of a small area mean. We generate samples according to a true semi-
parametric nested error model with a linear, quadratic, and exponential (1) mean func-
tions and look at the performance of the proposed methodunder diffeent contamination
schemes.

Bibliography

[1] Fellner, W. H. (1986). Robust estimation of variance components. Technometrics, 28,
51–60.

[2] Opsomer, J. P., Claeskens, G., Ranalli, M. G., Kauemann, G., and Breidt, F. J. (2008).
Non-parametric small area estimation using penalized spline regression. Journal of the
Royal Statistical Society, Series B, 70, 265–286.

[3] Rao, J.N.K, Sinha, S. K., Dumitrescu, L. (2014) Robust small area estimation under
semi-parametric mixed models, The Canadian Journal of Statistics, 42(1), 126-141.

[4] Sinha, S. K. and Rao, J. N. K. (2009). Robust small area estimation. The Canadian
Journal of Statistics, 37, 381–399.

4


